Predict schizophrenia from brain grey matter (GM). schizophrenia is associated with diffuse and complex pattern of brain atrophy. We will try to learn a predictor of the clinical status (patient with schizophrenia vs. healthy control) using GM measurements on the brain participants.
There are 410 samples in the training set and 103 samples in the test set.
Voxel-based_morphometry VBM using cat12 software which provides:
Regions Of Interest (rois
) of Grey Matter (GM) scaled for the Total
Intracranial Volume (TIV): [train|test]_rois.csv
284 features.
VBM GM 3D maps or images (vbm3d
) of voxels in the
MNI space:
[train|test]_vbm.npz
contains 3D images of shapes (121, 145, 121).
This npz contains the 3D mask and the affine transformation to MNI
referential. Masking the brain provide flat 331 695 input features (voxels)
for each participant.
By default problem.get_[train|test]_data()
return the concatenation of 284 ROIs of
Grey Matter (GM) features with 331 695 features (voxels) within a brain mask.
Those two blocks are higly redundant.
To select only on ROIs (rois
) features do:
X[:, :284]
To select only on (vbm
) (voxel with the brain) features do:
X[:, 284:]
The target can be found in [test|train]_participants.csv
files, selecting the
age
column for regression problem.
The main Evaluation metrics is the Root-mean-square deviation RMSE. We will also look at the R-squared R2.
This starting kit requires Python and the following dependencies:
numpy
scipy
pandas
scikit-learn
matplolib
seaborn
jupyter
ramp-workflow
Therefore, we advise you to install Anaconda distribution which include almost all dependencies.
Only nilearn
and ramp-workflow
are not included by default in the Anaconda
distribution. They will be installed from the execution of the notebook.
To run a submission and the notebook you will need the dependencies listed in requirements.txt. You can install the dependencies with the following command-line:
pip install -U -r requirements.txt
If you are using conda, we provide an environment.yml file for similar usage.
conda env create -f environment.yml
Then, you can activate the environment using:
conda activate brain-anatomy-schizophrenia
And desactivate using
conda deactivate
python download_data.py
jupyter notebook brain_anatomy_schizophrenia_starting_kit.ipynb
Tune your model using the starting_kit
The submissions need to be located in the submissions
folder.
For instance for starting_kit
, it should be located in
submissions/starting_kit
.
Copy everything required to build your estimator in a submission file:
submissions/starting_kit/estimator.py
.
This file must contain a function get_estimator()
.
Run locally:
ramp-test --submission starting_kit
%matplotlib inline
import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
participants_train = pd.read_csv(os.path.join("data", "train_participants.csv" ))
participants_train["set"] = 'train'
participants_test = pd.read_csv(os.path.join("data", "test_participants.csv" ))
participants_test["set"] = 'test'
participants = pd.concat([participants_train, participants_test])
sns.violinplot(x="set", y="age", data=participants)
print(participants[["age", "set"]].groupby("set").describe())
print(participants[["set", "sex", "age"]].groupby(["set", "sex"]).count())
age count mean std min 25% 50% 75% max set test 103.0 33.466019 12.809935 14.0 23.5 31.0 41.0 66.0 train 410.0 33.068293 12.562225 15.0 22.0 29.0 43.0 65.0 age set sex test 0.0 65 1.0 38 train 0.0 257 1.0 153
Load ROIs data, train_rois.csv
provides:
CSF_Vol
), Grey (GM_Vol
) and White Matter (WM_Vol
) volume of participants.l3thVen_GM_Vol
. Note that rois_train.loc[:, 'l3thVen_GM_Vol':]
matches problem.get_train_data()[:, :284]
.rois_train = pd.read_csv(os.path.join("data", "train_rois.csv" )).loc[:, 'l3thVen_GM_Vol':]
rois_test = pd.read_csv(os.path.join("data", "test_rois.csv" )).loc[:, 'l3thVen_GM_Vol':]
rois = pd.concat([rois_train, rois_test])
from sklearn.decomposition import PCA
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statsmodels.stats.api as sms
PCs = PCA(n_components=2).fit_transform(rois)
participants['PC1'], participants['PC2'] = PCs[:, 0], PCs[:, 1]
sns.scatterplot (x="PC1", y="PC2", hue="diagnosis", data=participants)
oneway = smf.ols('PC1 ~ diagnosis', participants).fit()
print(sm.stats.anova_lm(oneway, typ=2))
oneway = smf.ols('PC2 ~ diagnosis', participants).fit()
print(sm.stats.anova_lm(oneway, typ=2))
sum_sq df F PR(>F) diagnosis 2606.207928 1.0 29.245287 9.808873e-08 Residual 45538.013350 511.0 NaN NaN sum_sq df F PR(>F) diagnosis 791.094363 1.0 10.876419 0.001042 Residual 37167.493121 511.0 NaN NaN
Diagnosis is associated with two first components, we expect to be abble to predict the diagnosis
Import and read data
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.base import BaseEstimator
import sklearn.preprocessing as preprocessing
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_validate
import sklearn.metrics as metrics
import problem
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
Load concatenated data: 284 features from ROIs and 331,695 features from VBM.
X_train, y_train = problem.get_train_data()
X_test, y_test = problem.get_test_data()
assert X_train.shape[1] == 284 + 331695
Selecting only rois or vbm images:
This can be achieved by a ROIsFeatureExtractor
or VBMFeatureExtractor
class ROIsFeatureExtractor(BaseEstimator, TransformerMixin):
"""Select only the 284 ROIs features:"""
def fit(self, X, y):
return self
def transform(self, X):
return X[:, :284]
class VBMFeatureExtractor(BaseEstimator, TransformerMixin):
"""Select only the 284 ROIs features:"""
def fit(self, X, y):
return self
def transform(self, X):
return X[:, 284:]
fe = ROIsFeatureExtractor()
print(fe.transform(X_train).shape)
fe = VBMFeatureExtractor()
print(fe.transform(X_train).shape)
(410, 284) (410, 331695)
The framework is evaluated with a cross-validation approach. The metrics used are the ROC-AUC (auc) and the balanced Accuracy (bacc).
First we propose a simple classification predictor based on ROIs features only:
cv = problem.get_cv(X_train, y_train)
estimator = make_pipeline(
ROIsFeatureExtractor(),
MLPClassifier(random_state=1, hidden_layer_sizes=(200, 150, 100, 50, 25, )))
cv_results = cross_validate(estimator, X_train, y_train, scoring=['balanced_accuracy', 'roc_auc'], cv=cv,
verbose=1, return_train_score=True, n_jobs=5)
print("# 5CV")
print('bACC=%.2f' % cv_results['test_balanced_accuracy'].mean(),
'ROC-AUC=%.2f' % cv_results['test_roc_auc'].mean())
# Refit on all train
estimator.fit(X_train, y_train)
# Apply on test
y_pred_train = estimator.predict(X_train)
y_pred_test = estimator.predict(X_test)
score_pred_test = estimator.predict_proba(X_test)[:, 1]
bacc_test = metrics.balanced_accuracy_score(y_test, y_pred_test)
auc_test = metrics.roc_auc_score(y_test, score_pred_test)
print("# Test")
print('bACC=%.2f' % bacc_test,
'ROC-AUC=%.2f' % auc_test)
[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers. [Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 4.6s remaining: 6.9s [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 5.4s finished
# 5CV bACC=0.71 ROC-AUC=0.77 # Test bACC=0.63 ROC-AUC=0.74
Then we test a simple classification predictor based on large VBM features, using RandomForestClassifier
that will be faster on high dimensionnal VBM data.
cv = problem.get_cv(X_train, y_train)
estimator = make_pipeline(
VBMFeatureExtractor(),
RandomForestClassifier(random_state=1))
cv_results = cross_validate(estimator, X_train, y_train, scoring=['balanced_accuracy', 'roc_auc'], cv=cv,
verbose=1, return_train_score=True, n_jobs=5)
print("# 5CV")
print('bACC=%.2f' % cv_results['test_balanced_accuracy'].mean(),
'ROC-AUC=%.2f' % cv_results['test_roc_auc'].mean())
# Refit on all train
estimator.fit(X_train, y_train)
# Apply on test
y_pred_train = estimator.predict(X_train)
y_pred_test = estimator.predict(X_test)
score_pred_test = estimator.predict_proba(X_test)[:, 1]
bacc_test = metrics.balanced_accuracy_score(y_test, y_pred_test)
auc_test = metrics.roc_auc_score(y_test, score_pred_test)
print("# Test")
print('bACC=%.2f' % bacc_test,
'ROC-AUC=%.2f' % auc_test)
[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers. [Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 12.8s remaining: 19.2s [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 13.9s finished
# 5CV bACC=0.70 ROC-AUC=0.76 # Test bACC=0.63 ROC-AUC=0.70
The submissions need to be located in the submissions folder. For instance for starting_kit
, it should be located in submissions/submissions/starting_kit
.
Copy everything required (the cell bellow) to build your estimator in a submission file: submissions/submissions/starting_kit/estimator.py
. This file must contain a function get_estimator()
:
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline
class ROIsFeatureExtractor(BaseEstimator, TransformerMixin):
"""Select only the 284 ROIs features:"""
def fit(self, X, y):
return self
def transform(self, X):
return X[:, :284]
def get_estimator():
"""Build your estimator here."""
estimator = make_pipeline(
ROIsFeatureExtractor(),
MLPClassifier(random_state=1, hidden_layer_sizes=(200, 150, 100, 50, 25, )))
return estimator
Run locally:
ramp-test --submission starting_kit
Follow the instructions: Submitting to a ramp event